Пн-пт: 10:00—20:00 по предварительной записи: пн-пт
whatsapp telegram vkontakte email

Самостоятельная компьютерная диагностика автомобилей ВАЗ: что может быть проще?

Карбюраторные автомобили шли с конвейера без мозгов, так как все управление в них реализовано механически. С приходом инжекторных систем питания машины начали наполняться всевозможной электроникой. Обработкой информации от датчиков и генерацией управляющих сигналов занимается ЭБУ. Выход его из строя способен полностью обездвижить железного коня, поэтому к модулю управления следует относится с повышенной внимательностью.

Внешний вид электронного блока управления

Инструкция по снятию и замене ЭБУ

Необходимость демонтажа блока ЭСУД 16 клапанного двигателя десятки возникает в случае необходимости проведения ремонта при выявлении неисправностей. Сам процесс ремонта будет зависеть от того, что конкретно произошло в работе ЭБУ. К примеру, если окислились контакты на разъеме модуля, то блок необходимо демонтировать для их зачистки или замены. Если причина кроется в повреждении корпуса, то устройство нужно снимать для замены, если же внутрь попала вода, то модуль следует снять для того, чтобы высушить. Только после того, как вы просушите блок, его можно будет протестировать.
В том случае, если проблема кроется в работоспособности платы и некоторых выгоревших элементах, то ее можно попытаться отремонтировать самостоятельно, перепаяв некоторые компоненты. Но мы бы все же порекомендовали обратиться за помощью к специалистам, особенно, если никогда ранее вы не сталкивались с подобной задачей (автор видео о ремонте управляющего контроллера — Вячеслав Чистов).

Инструменты

Чтобы произвести замену модуля, вам потребуется:

  • торцевая головка на 10;
  • рукоятка для трещотки;
  • крестообразная отвертка.

Последовательность выполнения работы

Перед демонтажем устройства следует отключить минусовую клемму от аккумулятора авто:

Транспортное средство необходимо поставить на ровную поверхность, без склонов, при этом нужно поставить авто на стояночный тормоз. Следующие этапы работы выполняют в салоне авто

Вам необходимо осторожно отключить разъем с проводами от блока управления, но перед этим следует отсоединить защелку. Когда вы доберетесь непосредственно до контроллера управления силовым агрегатом, с помощью ключа нужно будет выкрутить две гайки, которые фиксируют модуль на планке. После того, как эти гайки будут выкручены, нужно будет немного сдвинуть саму планку в правую сторону, это позволит высвободить ее из зацепления. Выполнив эти действия, управляющий контроллер можно будет демонтировать. Если вы производите замену устройства, то при поломке следует произвести замену модуля на аналогичный, который и был установлен

То есть если у вас стоял ЭБУ Январь 7.2, то ставится такой же модуль. Если блок подлежит ремонту, то его следует отремонтировать, после чего установить на место. Процедура монтажа выполняется аналогичным образом, только в обратной последовательности.

Не занимайтесь ремонтом блока управления, если вам никогда ранее не приходилось сталкиваться с такой задачей!

Процесс регулировки

После подключения ноутбука к бортовому компьютеру машины у вас появляется возможность проконтролировать все параметры транспортного средства в различных его системах и увидеть перечень ошибок, негативно влияющих на работу ДВС. Для выявления ошибок данные, полученные таким образом, нужно сверить с базовыми параметрами. В большинстве случаев программа сама указывает на отклонение от нормы. Если нет, то ошибку надо искать по ее коду в каталоге.

После определения причин отклонений от нормы, ошибки достаточно просто устраняются при помощи регулировки тех или иных параметров, влияющих на работу инжектора.

Поиск ошибок на ваз 2112 8 кл.Поиск ошибок на ваз 2112 8 кл.

Дополнительные обозначения


Предохранители автомобиля ваз 2107 расположены следующим образом:

  • лампы заднего света и фонарей заднего хода;
  • электродвигатель вентилятора отопителя, насосов омывателей фар и очистителей стекла;
  • сигнализатор включения обогревателя заднего стекла ваз 2107;
  • указатели поворота и реле аварийной сигнализации;
  • противотуманные фонари;
  • тахометр, вольтметр;
  • контрольные лампы давления масла, жидкости, указатели уровня и резерва топлива на щитке приборной панели, освещение панели приборов;
  • прикуриватель и часы;
  • звуковой сигнал ВАЗ;
  • освещение салона (до 2000-го года выпуска – на потолке одна лампа, у вышедших после 2000-го – два плафона на стойках задних дверей);
  • дальний свет фар;
  • контрольная лампа дальнего света;
  • подкапотное освещение и освещение номерного знака;
  • подсветка бардачка;
  • правая фара;
  • левая фара.

Изменение калибровок ПО (ЭСУД доработка)

ЭСУД доработка
Данный вид регулировки инжектора предполагает внесение изменений в некоторые заводские настройки для оптимизации ПО с целью улучшения технических характеристик ДВС. При этом владельцы машин, на которых было установлено некорректно работающее программное обеспечение, отмечают снижение потребления топливной смеси до указанных производителем значений. Если программное обеспечение работает корректно – расход топлива остается на прежнем уровне. Специалисты отмечают тот факт, что ЭСУД доработка не уменьшает срок эксплуатации двигателя, однако качество топлива, используемого после регулировки, должно быть на высоком уровне.

Электронные блоки управления двигателем Январь

Электронные блоки управления инжекторным двигателем (ЭБУ, контроллеры) Январь автомобилей ВАЗ выпускаются с конца 90-х годов прошлого века. Под их управлением работали и работают ЭСУД большинства моделей автомобилей ВАЗ как переднеприводных так и заднеприводных. Ниже приведена таблица применяемости основных блоков управления ЭСУД впрысковых двигателей автомобилей ВАЗ различных годов выпуска (с 90-х по наши дни). С нормами токсичности R-83, EURO-2, 3, 4. Также перечислены особенности ЭСУД в которых они установлены.

Январь-4.1 (4)

Идентификатор ПО: J4V13O14, J4V13V14, J4V13N14, J4V13T14.

Двигатель: 8-ми клапанный 2111, 1.5 литра (автомобили ВАЗ 21083, 21093, 21099, 21102).

Особенности ЭСУД: без нейтрализатора, датчика кислорода (лямбда зонда), с СО-потенциометром (ручная регулировка СО), нормы токсичности R-83.

Январь 4.1

Идентификатор ПО: J4V07W15, J4V07Y16, J4V07Y19.

Двигатель: 16-ти клапанный 2112, 1.5 литра (автомобиль ВАЗ 21103).

Особенности ЭСУД: без нейтрализатора, датчика кислорода (лямбда зонда), с СО-потенциометром (ручная регулировка СО), R-83.

Январь 5.1

Идентификатор ПО: J5V03F21, J5V03G21, J5V03H21, J5V03I21, J5V03J21, J5V03K21, J5V03L21.

Двигатель: 8-ми клапанный 2111, 1,5 литра (автомобили ВАЗ 21083, 21093, 21099, 21102, 21110).

Особенности ЭСУД: нейтрализатор, адсорбер, датчик кислорода, Евро-2.

Январь 5.1

Идентификатор ПО: J5V05F16, J5V05H16, J5V05I16, J5V05J16, J5V05K17, J5V05L19, J5V05M30, J5V05N35, 5V05N35.

Двигатель: 16-ти клапанный 2112, 1,5 литра (автомобили ВАЗ 21103, 21113, 2112).

Особенности ЭСУД: нейтрализатор, адсорбер, датчик кислорода, Евро-2.

Январь 5.1.1

Идентификатор ПО: J5V13F02, J5V13H02, J5V13I02, J5V05J16, J5V13L05, 5V13L05.

Двигатель: 8-ми клапанный 2111, 1.5 литра (автомобили ВАЗ 21083, 21093, 21099, 21102, 21110).

Особенности ЭСУД: без нейтрализатора, датчика кислорода (лямбда зонда), с СО-потенциометром (электронная регулировка регулировка СО, R-83).

Январь 5.1.2

Идентификатор ПО: J5V07G26, J5V07I27, J5V07J28.

Двигатель: 16-ти клапанный 2112, 1.5 литра (автомобили ВАЗ 21103, 21113, 2112).

Особенности ЭСУД: без нейтрализатора, датчика кислорода (лямбда зонда), с СО-потенциометром (электронная регулировка регулировка СО, R-83).

Январь 5.1.3

Идентификатор ПО: J5V26K23, J5V05L52.

Двигатель: 8-ми клапанный 2107, 1.5 литра (автомобили ВАЗ 2106-20, 21043-20, 21061-20, 2107-20).

Особенности ЭСУД: нейтрализатор, адсорбер, датчик кислорода, отсутствует датчик детонации, Евро-2.

Январь 7.2

Производство Автел, идентификатор ПО А203ЕК34.

Двигатель: 8-ми клапанный, 2111, объемом 1,5 литра (автомобили ВАЗ 2113, 2114, 2115).

Особенности ЭСУД: нейтрализатор, адсорбер, один датчик кислорода, Евро-2.

Январь 7.2

Производство Ителма, идентификатор ПО I203ЕК34, ПО I203ЕL35.

Двигатель: 8-ми клапанный, 2111, объемом 1,5 литра (автомобили ВАЗ 2113, 2114, 2115).

Особенности ЭСУД: нейтрализатор, адсорбер, один датчик кислорода, Евро-2.

Январь 7.2

Производство Ителма, идентификатор ПО I204DM52, ПО I204DM53.

Двигатель: 8-ми клапанный, 21114, объемом 1,6 литра (автомобили ВАЗ 2113, 2114, 2115, 21101, 21112, 21121, Лада Калина, Лада Гранта).

Особенности ЭСУД: нейтрализатор, адсорбер, датчик кислорода, Евро-2.

Январь 7.2

Производство Ителма, идентификатор ПО I205DM52, ПО I205DM53, I205DP57.

Двигатель: 16-ти клапанный, 21124, объемом 1,6 литра (автомобили ВАЗ 21104, 21114, 21123, 21124).

Особенности ЭСУД: нейтрализатор, адсорбер, датчик кислорода, Евро-2.

Январь 7.2

Производство Автел, Ителма, идентификатор ПО А226FM10, ПО I226FM10.

Двигатель: 8-ми клапанный, 21067, объемом 1,6 литра (автомобиль ВАЗ 21074-20).

Особенности ЭСУД: нейтрализатор, адсорбер, датчик кислорода, отсутствует датчики фаз и детонации, Евро-2.

Примечания и дополнения

— ЭБУ- специализированный микрокомпьютер, в котором установлена программа управления двигателем, а датчики и исполнительные устройства – периферийное оборудование этого компьютера. На основе полученных данных блок рассчитывает управляющие команды и выдает их на исполнительные устройства.

Еще статьи по инжектору ВАЗ

Ошибки, выдаваемые ЭБУ

Электронный бортовой компьютер — сложный и одновременно очень чувствительный прибор. Он считается своего рода «мозгом» в конструкции любого автомобиля, так как отвечает за все происходящие в системах процессы

Поэтому очень важно периодически диагностировать «самочувствие» своего «бортовика», чтобы все выдаваемые им ошибки не оставлять без внимания

Что такое ошибка ЭБУ

Как говорилось выше, современные блоки управления определяют самые разные ошибки: от отсутствия напряжения в сети до выхода из строя того или иного механизма.

При этом сигнал о неисправности подаётся водителю в зашифрованном виде. Все данные об ошибке сразу же поступают в память ЭБУ и хранятся там вплоть до удаления через сканер в СТО

Важно, что действующие ошибки невозможно удалить до тех пор, пока не будет устранена причина их появления

Расшифровка кодов ошибок

ЭБУ ВАЗ 2107 может выявить несколько сотен самых разнообразных ошибок. Водителю необязательно знать расшифровки каждой из них, достаточно иметь под рукой справочник или гаджет, подключённый к интернету.

Таблица: перечень кодов ошибок ВАЗ 2107 и их расшифровка

Код ошибки Значение
Р0036 Неисправна цепь нагревателя датчика кислорода (банк 1, датчик 2).
Р0363 Цилиндр 4, обнаружены пропуски воспламенения, отключена топливоподача в неработающих цилиндрах.
P0422 Эффективность нейтрализатора ниже пороговой.
P0500 Неверный сигнал датчика скорости автомобиля.
P0562 Пониженное напряжение бортовой сети.
P0563 Повышенное напряжение бортовой сети.
P1602 Пропадание напряжения бортовой сети в контроллере.
P1689 Ошибочные значения кодов в памяти ошибок контроллера.
P0140 Цепь датчика кислорода после нейтрализатора неактивна.
P0141 Датчик кислорода после нейтрализатора, нагреватель неисправен.
P0171 Система топливоподачи слишком бедная.
P0172 Система топливоподачи слишком богатая.
P0480 Реле вентилятора, обрыв цепи управления.
P0481 Неисправность цепи вентилятора охлаждения 2.
P0500 Датчик скорости автомобиля неисправен.
P0506 Система холостого хода, низкие обороты двигателя.
P0507 Система холостого хода, высокие обороты двигателя.
P0511 Регулятор холостого хода, цепь управления неисправна.
P0627 Реле бензонасоса, обрыв цепи управления.
P0628 Реле бензонасоса, замыкание цепи управления на массу.
P0629 Реле бензонасоса, замыкание цепи управления на бортовую сеть.
P0654 Тахометр комбинации приборов, цепь управления неисправна.
P0685 Главное реле, обрыв цепи управления.
P0686 Главное реле, замыкание цепи управления на массу.
Р1303 Цилиндр 3, обнаружены пропуски воспламенения, критичные для нейтрализатора.
P1602 Контроллер системы управления двигателем, пропадание напряжения питания.
P1606 Цепь датчика неровной дороги, выход сигнала из допустимого диапазона.
P0615 Проверка обрыва цепи.

Руководствуясь этой таблицей, можно точно определить причину сигнала об ошибке

Важно, что бортовой компьютер крайне редко ошибается, поэтому можно смело полагаться на полученные коды

Видео: как реагировать на ошибку Check

Сброс ошибки двигателя check ВАЗ 21099, 2110, 2111, 2112, 2113, 2114, 2115, Калина, Приора, ГрантаСброс ошибки двигателя check ВАЗ 21099, 2110, 2111, 2112, 2113, 2114, 2115, Калина, Приора, Гранта

Пиновка разъема ЭБУ — Лада 2107, 1.6 л., 2008 года на DRIVE2

1 Не используется.

2 Выход управления первичной обмоткой катушки зажигания 2 и 3 цилиндров. Напряжение питания первичной обмотки катушки зажигания поступает с клеммы «15» выключателя зажигания. Сигнал управления импульсный, активный уровень — низкий, не более 2,5 В. Длительность зависит от напряжения бортсети — от нескольких до десятков миллисекунд.

3 Масса цепи зажигания. Используется для соединения o массы выходных ключей управления первичными обмотками катушек зажигания с кузовом автомобиля.

4 Не используется.

5 Выход управления первичной обмоткой катушки зажигания 1 и 4 цилиндров. Напряжение питания первичной обмотки катушки зажигания поступает с клеммы «15» выключателя зажигания. Сигнал управления импульсный, активный уровень — низкий, не более 2,5 В. Длительность зависит от напряжения бортсети — от нескольких до десятков миллисекунд.

6 Выход управления форсункой 2 цилиндра. Напряжение питания обмотки форсунки поступает с выхода (клемма «30») главного реле. Сигнал управления импульсный, активный уровень — низкий, не более 1 ,5 В. Длительность зависит от режима работы двигателя и составляет от нескольких до десятков миллисекунд.

7 Выход управления форсункой 3 цилиндра. Напряжение питания обмотки форсунки поступает с выхода (клемма «30») главного реле. Сигнал управления импульсный, активный уровень — низкий, не более 1 ,5 В. Длительность зависит от режима работы двигателя и составляет от нескольких до десятков миллисекунд.

8 Выход сигнала частоты вращения коленчатого вала на тахометр. На входе сигнала частоты вращения коленчатого вала комбинации приборов имеется резистор, подключенный к напряжению бортсети автомобиля (клеммы «15» выключателя зажигания). Активный уровень сигнала — низкий, не более 1 В. Частота следования импульсов равна удвоенной частоте вращения коленчатого вала двигателя. Коэффициент заполнения по активному уровню равен 33%.

9 Не используется.

10 Выход сигнала расхода топлива на маршрутный компьютер. На входе сигнала расхода топлива маршрутного компьютера имеется резистор, подключенный к напряжению бортсети автомобиля (клеммы «15» выключателя зажигания). Активный уровень сигнала — низкий, не более 1 В. Частота следования импульсов определяется текущим расходом топлива — 16000 импульсов на 1 л подаваемого в двигатель топлива. Длительность активного уровня сигнала равна 0,9 мс.

11 Не используется.

12 Вход напряжения бортсети от аккумуляторной батареи (клемма «30» выключателя зажигания). Номинальное напряжение при неработающем двигателе составляет 12 В. При работающем двигателе — 13,5-14 В.

13 Вход напряжения бортсети от выключателя зажигания (клемма «15»). Номинальное напряжение при включенном зажигании и неработающем двигателе составляет 12 В. При работающем двигателе — 13,5-14 В.

14 Выход управления главным реле. Напряжение питания поступает на обмотку реле с клеммы «плюс» аккумуляторной батареи. Сигнал управления дискретный, активный уровень — низкий, не более 1 ,5 В. При переводе замка зажигания из положения «выключено» в положение «включено» реле должно включаться немедленно. При переводе замка зажигания из положения «включено» в положение «выключено» контроллер задерживает выключение главного реле на время около 10 сек.

15 Вход сигнала датчика положения коленчатого вала (контакт «А»). При вращении коленчатого вала двигателя на контакте присутствует сигнал напряжения переменного тока, близкий по форме к синусоиде. Частота и амплитуда сигнала пропорциональны частоте вращения коленчатого вала. При включенном зажигании и отсутствии вращения коленчатого вала в случае исправной цепи датчика напряжение на входе должно быть около 2,5 В.

16 Вход сигнала датчика положения дроссельной заслонки. При включенном зажигании на входе должен быть сигнал напряжения постоянного тока, величина которого зависит от степени открытия дроссельной заслонки: при закрытой заслонке — ниже 0,7 В, а при полностью открытой — выше 4,1 В.

17 Масса датчика положения дроссельной заслонки. Напряжение на контакте должно быть равным нулю.

18 Вход сигнала датчика кислорода. Если датчик кислорода имеет температуру ниже 1 50 °С (не прогрет) на контакте присутствует напряжение 300-600 мВ. Когда датчик кислорода прогрет, то при работающем двигателе напряжение несколько раз в секунду переключается между низким значением 50-100 мВ и высоким 800…900 мВ.

19 Вход сигнала датчика детонации. Сигнал представляет собой напряжение переменного тока, амплитуда и частота которого зависят от вибраций блока цилиндров двигателя.

20 Масса датчика детонации. Напряжение на контакте должно быть равным нулю.

21 Не используется.

22 Не используется.

23 Не используется.

24 Не используется.

25 Не используется.

26 Не используется.

27 Выход управления форсункой 1 цилиндра. Напряжение питания обмотки форсунки поступает с выхода (клемма «30») главного реле. Сигнал управления импульсный, активный уровень — низкий, не более 1 ,5 В. Длительность зависит от режима работы двигателя и составляет от нескольких до десятков миллисекунд.

28 Не используется.

29 Не используется.

30 Не используется.

31 Выход управления контрольной лампой индикации неисправностей. Напряжение питания контрольной лампы поступает с клеммы «15» выключателя зажигания. При включении зажигания без запуска двигателя и при наличии неисправностей сигнал имеет низкий уровень напряжения — не более 2 В. В отсутствии неисправностей на контакте присутствует напряжение бортсети.

32 Питание датчика положения дроссельной заслонки. На контакт подается стабилизированное напряжение 5+0,1 В.

33 Питание датчика массового расхода воздуха. На контакт подается стабилизированное напряжение 5+0,1 В.

34 Вход сигнала датчика положения коленчатого вала (контакт «В»). При вращении коленчатого вала двигателя на контакте присутствует сигнал напряжения переменного тока, близкий по форме к синусоиде. Частота и амплитуда сигнала пропорциональны частоте вращения коленчатого вала. При включенном зажигании и отсутствии вращения коленчатого вала в случае исправной цепи датчика напряжение на входе должно быть около 2,5 В.

35 Масса датчика температуры охлаждающей жидкости. Напряжение на контакте должно быть равным нулю.

36 Масса датчика массового расхода воздуха. Напряжение на контакте должно быть равным нулю. Масса датчика массового расхода воздуха. Напряжение на контакте должно быть равным нулю.

37 Вход сигнала датчика массового расхода воздуха. Сигнал напряжения постоянного тока, величина которого (0…5 В) изменяется в зависимости от количества поступающего в двигатель воздуха. При отсутствии поступления воздуха (двигатель не работает) напряжение на контакте должно быть около 1 В.

38 Не используется.

39 Вход сигнала датчика температуры охлаждающей жидкости. Напряжение на контакте зависит от температуры охлаждающей жидкости: при температуре 20 °С напряжение около 3,8 В, при температуре 90 °С напряжение ниже 0,5 В. При обрыве в цепи датчика напряжение на контакте 5+0,1 В.

40 Вход сигнала датчика температуры впускного воздуха. Напряжение на контакте зависит от температуры поступающего в двигатель воздуха: при температуре 20 °С напряжение около 3,5 В, при температуре 90 °С напряжение выше 4,2 В. При обрыве в цепи датчика напряжение на контакте 5+0,1 В.

41 Не используется.

42 Не используется.

43 Не используется.

44 Вход напряжения бортовой сети на выходе главного реле. Напряжение с выхода главного реле (клемма «30») при неработающем двигателе составляет 12 В. При работающем двигателе — 13,5-14 В.

45 Выход питания датчика фаз. После включения главного реле на датчик фаз подается напряжение питания. При неработающем двигателе оно равно 12 В. При работающем двигателе — 13,5-14 В.

46 Выход управления клапаном продувки адсорбера. Напряжение питания клапана продувки адсорбера поступает с выхода (клемма «30») главного реле. Сигнал управления импульсный, активный уровень — низкий, не более 1 В. Коэффициент заполнения изменяется в зависимости от режима работы двигателя в диапазоне 0…100%.

47 Выход управления форсункой 4 цилиндра. Напряжение питания обмотки форсунки поступает с выхода (клемма «30») главного реле. Сигнал управления импульсный, активный уровень — низкий, не более 1 ,5 В. Длительность зависит от режима работы двигателя и составляет от нескольких до десятков миллисекунд.

48 Выход управления нагревателем датчика кислорода. Напряжение питания нагревателя датчика кислорода поступает с выхода (клемма «30») главного реле. Сигнал управления импульсный, активный уровень — низкий, не более 2 В. Коэффициент заполнения изменяется в диапазоне 0…100% в зависимости от температуры и влажности в области установки датчика.

49 Не используется.

50 Выход управления дополнительным реле стартера. Напряжение питания обмотки дополнительного реле стартера поступает с выхода (клемма «30») главного реле. Сигнал управления дискретный, активный уровень — низкий, не более 1 В. При поступлении сигнала дополнительное реле включается и соединяет клемму «50» выключателя зажигания с клеммой «50» втягивающего реле стартера.

51 Масса контроллера. Напряжение на контакте должно быть равным нулю.

52 Не используется.

53 Масса контроллера. Напряжение на контакте должно быть равным нулю.

54 Не используется.

55 Не используется.

56 Не используется.

57 Вход кодирования вариантов калибровочных данных. В памяти контроллера может храниться два варианта калибровочных данных, выбор одного из которых производится подключением или отсутствием подключения в жгуте проводов данного контакта к массе. В отсутствии подключения к массе на данный контакт подается напряжение бортсети через внутренний резистор контроллера.

58 Не используется.

59 Вход сигнала датчика скорости автомобиля. Напряжение бортсети поступает на этот контакт через внутренний резистор контроллера. Датчик импульсно замыкает цепь на массу с частотой, пропорциональной скорости автомобиля (6 импульсов на метр пути).

60 Не используется.

61 Масса выходных каскадов. Используется для соединения массы выходных ключей управления исполнительными устройствами с кузовом автомобиля.

62 Не используется.

63 Вход напряжения бортовой сети на выходе главного реле. Напряжение с выхода главного реле (клемма «30») при неработающем двигателе составляет 12 В. При работающем двигателе — 13,5-14 В.

64 Выход управления регулятором холостого хода (клемма D). Напряжение на контакте трудно предсказать, и его измерение в целях обслуживания не осуществляется.

65 Выход управления регулятором холостого хода (клемма С). Напряжение на контакте трудно предсказать, и его измерение в целях обслуживания не осуществляется.

66 Выход управления регулятором холостого хода (клемма В). Напряжение на контакте трудно предсказать, и его измерение в целях обслуживания не осуществляется.

67 Выход

Возможные неполадки ЭБУ

Неполадки могут относиться к различным деталям автомобиля:

  • Датчики. Это может касаться абсолютно любых из них, но чаще всего страдают именно температурные датчики;
  • Форсунки. Обычно проблемы могут появиться, если в цепи наблюдается обрыв какой-то детали. В результате этого загорание форсунок происходит в замедленном темпе;
  • Двигатель. Обычно мотор начинает показывать фокусы, если водитель долгое время проводит в дороге. Чаще всего он перегревается или закипает;
  • Клапаны. Они могут забиться, поэтому воздушно-топливная смесь не будет проходить с необходимой интенсивностью;
  • Вентиляторы. Могут скапливать на себе огромное количество посторонних частиц, что приведет к увеличению их массы. А это станет причиной того, что они будут работать с неполной силой. В результате появится еще одна проблема – перегрев мотора;
  • Инжектор. Может выдавать различные ошибки.

Где находится диагностический разъем

Рассматриваемый тип устройства, который еще также называется диагностической колодкой, в конструкции семерки и других автомобилей служит для того, чтобы произвести проверку состояния ТС на наличие ошибок и неполадок. После такой манипуляции можно принимать решение о необходимости ремонта или замены деталей и механизмов.

Конструктивно разъем представляет собой контактное соединение с большим количеством выводов. К этому соединению подключается автономный источник (компьютер), и при помощи специальных программ проводится проверочное мероприятие. На семерке диагностический разъем расположен в салоне со стороны пассажира под бардачком. Кстати, на многих моделях автомобилей отечественного и зарубежного производства, разъем также находится в этом месте.

Чтобы произвести подключения компьютера к автомобилю через соединение, не понадобится ничего разбирать, снимать или откручивать. Проверку можно проводить, находясь в салоне автомобиля, так как суть этого процесса в том, чтобы выявить ошибки в работе двигателя.

Зная, где находится соединительный элемент, разобраться с подключением к компьютеру не составит большого труда. Для соединения компьютера с автомобилем через разъем OBD2 понадобится специальный кабель с соответствующими штекерами (коннекторами). Однако есть способ проще, чтобы не покупать кабель. Для этого нужно соединить два контакта в колодке, чтобы ЭБУ показал коды ошибок. Перед соединением контактов понадобится разобраться с распиновкой колодки на ВАЗ 2107.

Распиновка контактов диагностического разъема ВАЗ 2107

Что такое и зачем нужна колодка для диагностики в конструкции семерки, известно, поэтому при необходимости воспользоваться ею, может понадобиться информация о распиновке. Распиновкой называется обозначение и расшифровка каждого контакта. В конструкции семерки используется 2 типа разъемов — 12-контактные прямоугольные и 16-контактные трапециевидные. Определение ошибок можно выполнить не только при помощи компьютера и специальных программ, но еще и своими руками. Для этого нужно знать распиновку, чтобы правильно соединить необходимые контакты для проверочных манипуляций.

Рассмотрим, что собой представляет распиновка каждого типа диагностических колодок.

Прямоугольная 12-ти контактная колодка

Такие типы устройств устанавливались на все инжекторные автомобили, которые выпускались до 2002 года. Разберемся с обозначением контактов:

  1. A — масса.
  2. B — диагностическая линия двигателя.
  3. C — AIR.
  4. D — лампа самостоятельной проверки или потенциометр.
  5. H — питание 12В.
  6. G — управление бензонасосом.
  7. J — гнездо для проверки состояния подушек безопасности.
  8. M — линия проверки двигателя и ABS.

Трапециевидная 16-ти контактная колодка

После 2002 года отечественные автомобили начали оснащаться колодками в форме трапеции, на которых увеличилось количество контактов с 12 до 16. Рассмотрим назначения основных шин:

  • 2 — плюсовой контакт.
  • 4 — заземление кузова.
  • 5 — сигнальное заземление.
  • 10 — минусовой контакт.
  • 15 — линия диагностики.
  • 16 — питание от аккумулятора 12В.

Когда известно, как выглядит распиновка диагностического разъема, не составит труда выполнить диагностику автомобиля самостоятельно. Ниже приведена схема устройства колодок с 12 и 16 контактами, а также штекером, с обозначением основных контактов.

Вычисление кодов

Чаще всего «расшифровывают» коды диагностической программы специальным прибором. Однако на ВАЗах это не так уж трудно сделать своими руками.

ЭБУ Январь 4 для ВАЗ 2110

Само диагностика происходит так:

  • Соединяете контакт «В», который имеет колодка диагностики и «массу»;
  • Ключ в зажигании поворачиваете на третье положение, машину не заводите;
  • Сначала упомянутая лампа «CHECK ENGINE» трижды подряд, вспышками высвечивает код 12. Он, собственно, ни о какой неисправности не сигнализирует, а просто показывает, что программы диагностики работают. На ВАЗ 2110 это происходит в таком порядке: лампа коротко мигает один раз (что следует считать обозначением цифры 1). После паузы, длящейся не менее двух секунд, мигает два раза подряд (двойка). Вот и получилась цифра два. И так повторяется три раза, чтобы водитель разобрал эти знаки;
  • Теперь нужно быть внимательным, чтобы не пропустить неисправностей. После того, как диагностическая программа заявила о своей исправности, она начнет высвечивать коды ошибок, если таковые есть. Точно так же – вспышками и паузами.

Бортовой компьютер ВАЗ 2107

Бортовым компьютером называется «умное» цифровое устройство, которое производит определённые операции по вычислению, получая данные от различных датчиков. То есть «бортовик» — это прибор, который собирает всю необходимую информацию о «самочувствии» систем автомобиля и преобразует её в понятные водителю знаки.

Сегодня на автомобили всех типов устанавливаются два вида бортовых компьютеров:

Какой ЭБУ стоит на ВАЗ 2107

Изначально ВАЗ 2107 не комплектовался бортовыми устройствами, поэтому водители были лишены возможности получения оперативных данных о состоянии систем машины. Однако более поздние версии «семёрки» с инжекторным двигателем уже располагают к установке этого прибора.

Заводские модели ВАЗ 2107 (инжектор) не оснащались ЭБУ, но имели специальное посадочное гнездо для устройства и возможности для подключения.

Инжекторная модель «семёрки» обладает множеством самых разных электронных компонентов. Любой водитель знает, что рано или поздно один из этих компонентов может начать работать неправильно или выйти из строя. При этом самостоятельная диагностика поломки в подобных случаях весьма затруднена — опять-таки из-за сложности электронных систем ВАЗ 2107. А установка даже типовой модели ЭБУ позволит своевременно получать данные о поломках и быстро устранять неисправности своими руками.

Таким образом, на ВАЗ 2107 можно установить любой типовой бортовой компьютер, который подходит по дизайну и разъёмам:

  • «Орион БК-07»;
  • «Штат Х-23М»;
  • «Престиж V55–01»;
  • UniComp — 400L;
  • Multitronics VG 1031 UPL и другие разновидности.

Основные функции ЭБУ для ВАЗ 2107

Любой бортовой компьютер, установленный на ВАЗ 2107, должен выполнять следующие функции:

  1. Определять текущую скорость движения автомобиля.
  2. Выявлять среднюю скорость езды на протяжении выбранного отрезка пути и за всю поездку.
  3. Устанавливать расход горючего.
  4. Контролировать время работы мотора.
  5. Считать пройденный километраж.
  6. Выполнять расчёт времени прибытия в пункт назначения.
  7. При сбое в системах авто незамедлительно сигнализировать о проблеме водителю.

Любой ЭБУ имеет экран и индикаторы, которые вставляются в центральную консоль в салоне автомобиля. На экране водитель видит отображение текущих показателей работы машины и может контролировать те или иные компоненты.

Бортовой компьютер на ВАЗ 2107 располагается сразу за панелью приборов, подсоединяясь к датчикам автомобиля. Экран или индикаторы выводятся непосредственно на приборную панель для удобства водителя.

Диагностика повреждений

Как понять, что требуется замена, проверка или ремонт инжектора? Даже без датчиков можно понять, что требуется ремонт элементов топливной системы, если имеются 1 из 2 главных признаков в моделях 2107, 21074:

  1. Нестабильная работа двигателя. Иногда он может глохнуть или плохо заводится.
  2. Куда менее очевидный признак — потеря мощности. Этот эффект заметен, если вы в основном ездите на средней скорости, но на большой он сильно ощутим.
  3. Последний признак фиксируется только датчиками — повышается давление внутри системы.

Иногда самостоятельно невозможно определить, где повреждение, и вот только тогда пригодится диагностика в сервисных центрах. Засор может стать причиной довольно серьезной поломки инжектора ВАЗ 2107, а также разрыва каналов. Давление, которое возникает внутри системы, может с легкостью привести в негодность самые хрупкие детали. Тут уже своими руками не получится исправить ситуацию, даже если под рукой есть полная схема автомобиля. Вывод один — нужно уделять чистке инжекторов много времени и внимания и выполнять ее регулярно.

Устройство и особенности инжектора ВАЗ 2107

Общий вид подкапотного пространства ВАЗ 2107. Сразу видно, что нет трамблера и карбюратора.

ВАЗ 2107 не всегда была «инжекторной». Многие годы двигатель был карбюраторным. Только с 2006 года, для выпуска ВАЗ для внутрироссийского рынка двигатель обзавелся системой принудительного впрыска топлива. Смысл тех инноваций был простой – соответствие уже принятым нормам «Евро – 2», которым многие годы соответствовали европейские автомобили. Суммарная мощность агрегата с новой системой питания составила 50 киловатт. Характеристики двигателя с новым впрыском топлива были следующие:

  • Режим употребления в городе – 8,5 литров100 км;
  • Расход топлива при скорости 90 кмч – 6,9 – 7,0 литров100 км;
  • Расход при скорости 120 кмч – порядка 9, 1 л.

Эти характеристики для ВАЗ 2107 инжектор завод гарантировал при использовании бензина типа А – 95. Какого – либо другого вида бензина для расчетов не предусматривалось. Смысл перевода с карбюраторного впрыска на электронный был в том, что не требуется постоянная регулировка и тонкая настройка впрыска, как при инжекторном двигателе. Устройство таково, что не «плавают» показатели холостых оборотов.

Изображено устройство — блок управления, «микропроцессорные мозги».

Блок принимает во внимание показатели тех датчиков, которые необходимы для нормальной работы инжекторного впрыска, а именно:

  • Датчик расположения дроссельной заслонки – устройство представляет собой резистор переменной емкости, которая зависит от степени нажатия на педаль «газа». Какого – нибудь аналогичного оборудования в «Жигулях» нет, а вот в радиоприемниках предостаточно.
  • Датчик положения коленвала (то есть работы цилиндров). По показаниям этого датчика производится полная синхронизация работы электронного процессора с частотой вращения коленвала. Это «эталонная тактовая частота».
  • Показатель насыщения смеси кислородом. Это устройство расположено на трубе выпуска отработанных газов, и занимается тем, что с помощью обратной связи контролирует количество поступающего топлива в смеси, так как топливо, сгорая, потребляет кислород. Показатели тех процессов полностью взаимосвязаны. На рисунке труба выпуска и датчик соединены сварным швом, то есть скорее всего, был произведен ремонт системы выпуска.
  • ДМРВ (датчик массового расхода воздуха). Он крепится на корпусе «воздухана». Его задача – точно определить то количество воздуха, которое попадает во впускной коллектор, а значит, характеристики сгораемой смеси.

Вышеописанные датчики относятся исключительно к системе инжекторного впрыска, и на карбюраторных вариантах «семёрки» их не бывает.

Естественно, «дыма без огня не бывает». Поэтому наряду со многими достоинствами, у ВАЗ 2107, оборудованными инжекторным впрыском топлива, есть и определенные «минусы».

Недостатки двигателя с инжекторным впрыском;

  • Высокие требования к качеству топлива, его октановому числу;
  • Установленный «под днищем» автомобиля катализатор существенно уменьшает дорожный просвет, лишая «семерку» некоторых преимуществ на бездорожье перед «пузотерками»;
  • Более сложный ремонт двигателя и затрудненный доступ к деталям моторного отсека.
  • Для того чтобы найти неисправность в системе впрыска, нужны специальные приборы;
  • В целом, «инжектор» более капризен. Так, например, возможность «прикурить» товарищу может обернуться тем, что двигатель заглохнет. Причина – в неисправности «электронных мозгов».

Но достоинства вполне окупают эти недостатки, так как инжекторный впрыск позволяет экономить топливо, облегчает холодный запуск двигателя, и не требуется «возиться» с карбюратором. Автомобиль с таким впрыском будет служить вам многие годы при правильном уходе.

принцип работы системы питания инжекторного двигателяпринцип работы системы питания инжекторного двигателя

МОЙ МОТОЦИКЛ

В этой статье мы детально остановимся на работе блоков управления инжектором.

1. Зачем нужен блок управления инжектором?

Завод, выпускающий мотоциклы не имеет технической возможности настраивать топливные карты каждому, сошедшему с конвейера мотоциклу. По сути — топливная карта – это таблица, в которой с определенным шагом занесены значения времен открытия инжектора в зависимости от угла открытия дроссельной заслонки и оборотов мотора. Инжектор это электромеханический клапан, открытием которого управляет блок управления мотоцикла. Чем больше времени открыт инжектор тем богаче смесь. Чем меньше — тем беднее смесь.

Например, в памяти блока управления может быть записано, что на угле открытия дроссельной заслонки в 5% и оборотах 5000RPM держать открытой заслонку инжектора (впрыснуть топливо) в течение 2 мс. Схожие значения прописаны в блоке управления на все углы открытия руки газа и на все обороты c заданным шагом дискретизации.

Значения топливной карты подбираются заводом для первых серийных прототипов, после чего во все блоки управления загружается одна и та же топливная карата с одними и теми же значениями.

К сожалению, даже на современном высокоточном производстве имеются погрешности. Так же как нет двух одинаковых людей — нельзя найти и два одинаковых мотора, с конвейера не сходит ни одного полностью одинакового мотора. Из 20 моторов, все 20 будут иметь отклонения в мощности в разных диапазонах оборотов, тем ни менее все 20 моторов получат одну и ту же топливную карту, загруженную заводом, которая, очевидно, не оптимальна.

На коррекции заводской погрешности и основана работа блока управления инжектором, который настраивает топливную карту под мотор. Оператор, с помощью специального стенда для замера мощности и газоанализатора может занести в блок управления инжектором коррекции топливной карты на всех углах открытия ручки газа. Блок управления инжектором – это, своего рода, корректор заводской топливной карты.

2. Может ли сам блок управления мотоциклом на основе лямбда зонда вносить коррекции в топливные карты таким образом, чтобы скорректировать заводские погрешности?

На сегодняшний день – ни один инжекторный мотоцикл не способен настраивать топливные карты на ходу. Заводской лямбда зонд, используемый на мотоциклах – узкополосный и служит исключительно для снижения эмиссии во время работы мотоцикла на холостом ходе. Этим объясняется исключение лямбда зонда из выпуска на гоночных мотоциклах. Датчик детонации на мотоциклах так же не используется в связи с большой вероятностью ложного срабатывания.

Это правда, что инжектор вносит изменения в топливные карты в зависимости от температуры, давления воздуха и ещё 6 других параметров, но коррекции вносятся всегда относительно карты, загруженной заводом. Таким образом, погрешность всегда сохраняется.

В блоке управления на 6000 оборотах и 10% открытия ручки газа записано время открытия инжектора = 0.9 мс. подобранное заводом для первых прототипов мотора.

Но на данном экземпляре мотора оптимальное время открытия составляет 0.92 мс., и заводские 0.9мс не являются оптимальными.

Блок управления высчитал, что при текущем давлении и температуре время открытия должно быть увеличено на 0.05 мс, он прибавляет к табличным 0.9 и получает 0.95, но для данного мотора табличные 0.9 заранее не являлись оптимальными и правильное значение, с учетом погрешности : 0.92 + 0.05 = 0.97 а не 0.95

Как мы видим, не смотря на вносимые блоком управления мотоциклом коррекции, погрешность всегда остаётся и исправить её можно с помощью блока управления инжектором.

Существует два типа блоков управления инжектором. Первый — подключается к инжекторам и в реальном масштабе времени вносит коррекции в импульсы на открытие инжектора блока управления. Таким образом, блок может корректировать заводскую карт. Но делает он это не автоматически, предварительно блок необходимо настроить на стенде (или загрузить карту, положившись на удачу).

Второй тип блоков управления инжектором — это FIT, первый в своем роде. FIT использует порт расширения, дающий доступ к изменению топливных карт. Блок управления мотоциклом запрограммирован таким образом, что он может быть переключен в режим опроса внешнего устройства на предмет коррекции топливной карты. Получив данные из внешнего источника, блок управления сам корректирует загруженные заводом топливные карты. Фактически FIT сообщает блоку управления коэффициенты, которые блок использует для временной модификации топливной карты.

В результате простого и инновационного решения, удалось избавиться о силовых ключей, которые в устройствах первого типа (PowerCommander) являются потребителем электроэнергии и габаритов. Поэтому FIT компактен, имеет низкую энергоемкость, 5 летнюю гарантию и относительно низкую стоимость. В остальном, FIT производит точно такую же карту что и Power Commander. Мы можем конвертировать карты PC в FIT и обратно и после прогона мотоцикла на стенде — будут результаты 1:1.

3. Чужие топливные карты

Вокруг топливных карт, загружаемых с сайтов, витает много мифов. Одни пользователи пишут, что карта помогла, другие – навредила.

Давайте разберемся, почему так получается. Рассмотрим мотоцикл с полным выпуском. Полный выпуск, определенной модели, установленный на определенную модель мотоцикла вносит дополнительную устойчивую погрешность в топливную карту блока управления. Уже не оптимальная карта становится ещё более неоптимальной. Для коррекции проблемы владелец выпуска приобретает блок управления инжектором и едет на стенд, где оператор убирает погрешность.

Владелец выкладывает топливную карту в интернет, а другой человек с аналогичным мотоциклом и выпуском загружает карту из сети и затем в свой блок управления инжектором.

Что же теперь получается. Выпуск вносит определенную постоянную погрешность, но мотор, на котором он настраивался, имел свою уникальную погрешность топливных карт. Ключевое слово тут — уникальную. Если погрешность топливной карты вашего мотора близка к той, на котором была получена загруженная карта – вы получите неплохой результат. Если погрешность была другой – вы ухудшите ситуацию и получите отрицательный результат.

Загружая чужую карту вы всегда полагаетесь на удачу. Иногда она есть, а иногда – нет. Тем ни менее попробовать стоит!

4. Мощность

Существует мнение что блок управления инжектором прибавляет мощность. Это действительно так. Но прибавляет он мощность именно в диапазонах оборотов, где ваша теоретическая топливная карта, загруженная заводом имеет наибольшие отклонения от действительности — а это могут быть любые обороты за 1-2 тысяч до красной зоны. На оборотах, близких к максимуму ваши инжекторы почти всегда открыты, и в этой зоне японский мотор всегда работает практически 100% оптимально. Погрешности завода не играют ощутимой роли на оборотах близких к максимальным, поэтому пиковой мощности ни один из блоков управления инжектором вам не прибавит. Тем ни менее, вы получите очень приятную постоянную тягу без провалов.

5. Autotune

Существует привлекательная идея настройки топливных карт во время движения мотоцикла. К сожалению, на 07.03.13 не существует работающей практической реализации этой идеи. Все модули, которые попадали к нам в руки, включая AUTOTUNE от PowerCommander справлялись с задачей только в узком диапазоне – за 2 тысячи оборотов до красной зоны. В остальных диапазонах блоки ухудшали картину.

Мы надеемся, что этой статьей мы развеяли часть мифов, связанных с блоками управлении инжектором. Мы выпускаем самый компактный и надежный блок управления инжектором FIT. Качество и размеры обуславливаются иным принципом работы – в отличии от других блоков управления инжектором, FIT интегрируется в блок управления через специальный порт расширения, который не занят на вашем мотоцикле и служит для подключения к блоку управления различных устройств, одним из которых является FIT. В результате, вместо 18 проводов с разъемами, необходимых для подключения таких блоков как PowerCommander — у FIT всего 3 провода.

Реле на блоке предохранителей

Реле блока предохранителей и реле ВАЗ 2107 расположены в одном блоке с предохранителями. Их назначение:

  1. Реле стеклообогревателя заднего.
  2. Реле омывайки и фароочистителя.
  3. Питание сигнала звукового.
  4. Реле электровентилятора системы охлаждения (до 2000 г. в.).
  5. Реле дальнего освещения.
  6. Реле ближнего освещения.

Проверка исправности реле может быть проведена с помощью мультиметра. Для этого необходимо произвести прозвонку обмотки якоря. Ее сопротивление обычно находится в пределах от 50 до 200 Ом. Надежнее произвести пробное подключение обмотки к напряжению бортовой сети автомобиля. Для этого реле необходимо демонтировать из блока реле и предохранителей. Если один вывод обмотки подключить к плюсовой клемме аккумуляторной батареи, а другой — к отрицательной, должен быть слышим характерный щелчок сработавшего реле. Основные причины неисправности реле:

  • подгорание контактов;
  • обрыв или перегорание обмотки реле;
  • залипание контактов.

Чистка и профилактика налета в системе

Устройство инжектора очень чувствительно к крупным включениям в бензине. Если вы используете дешевую марку топлива, будьте готовы скоро менять форсунки. Так что первое, что стоит сделать для своего бензонасоса ВАЗ, — изменить марку топлива. Система питания ВАЗ 2107 должна стать чище, возможность образования налета в системе все же не исключается. Поскольку горючая жидкость в каналах изредка застаивается, а иногда даже замерзает, то скорую поломку можно предотвратить только одним способом — регулярной чисткой.

Примерно каждые 35-40 тыс. км нужно проводить профилактические очистные работы топливной системы. Своими руками нужно промывать каналы. От качества чистки будет зависеть работоспособность двигателя. Если эту процедуру проводить нерегулярно, то вскоре с одной форсункой можете распрощаться и искать новую, а затем придется менять и остальные элементы бензонасоса ВАЗ.

В 4-цилиндровых типах инжекторных двигателей наблюдается разная интенсивность засорения форсунок. В районе 2 и 3 цилиндра всегда повышенная температура, поэтому накопление осадка там происходит быстрее.

Профилактическим средством в таких случаях считается специальная примесь полиэфирамина. Она предотвращает скопление гари в течение длительного времени.

Метки: m7.3

Комментарии 51

такое ощющения что два целиндра отказыают на ходу но после поворота ключа зажигания выкл вкл начеанает нормально роботать

У меня была такая же фигня. Поменял блок зажигания. И провода на свечи то же менял. Там один провод почти отвалился. Визуально этого не видно но когда потянул то он без особых усилий порвался. Помогло…

здравствуйте уважаемые подскожите ваз 21 07 инжетор набираешь скорость 90 пятую идет км 2 потом происходит потеря мощьности на ходу ключь зажигания выключаешь через секунду включаешь машина опять нормально

Гуляя по китайскому интернет магазину наткнулся на такую штуку: ELM327 OBDII V1.5 CAN-BUS Bluetooth за 9$. Девайс поддерживает: ISO15765-4 (CAN) ISO14230-4 (KWP2000) ISO9141-2 J1850 VPW J1850 PWM Будет ли эта штука работать Ваз 2107 2008г?

прошивка эбу М74к (классика) — Лада 2107, 1.6 л., 2011 года на DRIVE2

Поведаю историю, как самостоятельно прошил свой классический блок М74к. Не имея раннего опыта в этом деле и отсутствие какого либо мануала в инете по его перепрошивке. Было сложно, информация собиралась по крупинкам, но в итоге получилось, и все оказалось не так сложно. Огромная благодарность Роману Опалеву за неоценимую помощь и поддержку для достижения цели.

1. Начало.

Вынимаем ЭБУ из машины, выглядит он вот так.

маркировка ЭБУ

2 колодки с пинами, нам понадобиться левая

Для прошивки ЭБУ понадобиться: OpenDiagFree, ST10Flasher, сама прошивка (прошивку можно купить или найти любым удобным путем на просторах инета, я брал от Ледокола, по его положительным отзывам ), К-лайн адаптер ( я брал себе RDLab его прелесть в том что он коомутирует +14В и не требует подключения доп. питания от АКБ), перепайка резистора на 8,2 кОм для перехода в boot режим (режим прошивки).

2. Перепайка резистора.

Разбираем эбу и видим вот такую схему, красной палочкой на фото отмечено как нужно переставить резистор (пользовался вот этим руководством).

место перепайки резисторов

В результате я столкнулся с проблемой, расстояние между контактами куда нужно переставить резистор, больше чем сам резистор. Тогда был использован альтернативный вариант, я снял SMD резистор и впаял в место него обычный 8,2 кОм на 0.25 ват.
ВАЖНО при пайке использовать неактивный флюс — канифоль и её производные + сплав Розе для SMD, дабы не загубить плату и SMD компоненты !

припаяный резистор на 8,2 кОм

3. Подключение К-лайн адаптера к эбу.

уже подключенный ЭБУ с К-лайн адаптером к пк

Подключение проводов от К-лайн адаптера к пинам левой колодки ЭБУ делается по этой схеме ( детальное описание )

пины для подключения проводов от К-лайн адаптера
Важно !
подключаем все пины, как показано на рисунке выше,
кроме «зажигания» B2
— так называемое отключаемое напряжение.

4. Прошивка.

Подключив эбу к пк через К-лайн адаптер, запускаем программу ST10Flasher (COM порт программа выбирает автоматически), ждем 10 сек и подключаем провод B2 — отключаемое напряжение ( для удобства можно поставить тумблер на провод, я пользовался без тумблера, просто набрасывая провод на пин В2 ). Теперь жмем вкладку установить связь, внизу программы должно отобразиться «связь с ЭБУ установлена». Далее выбираем модель эбу М 73, тыкаем мышкой на нее. Теперь считываем FLASH и EEPROM и сохраняем в удобное для вас место. После выбираем прошивку вкладкой «загрузить FLASH» и ждем пока программа зальет прошивку. Далее жмем вкладку очистить EEPROM, тем самым стирая старые данные самообучения.

запись прошивки с помощью ST10Flasher

После прошивки отключаем К-лайн адаптер. Теперь обязательно отпаиваем наш резистор на 8,2 кОм и впаиваем SMD резистор на место.

5. Установка ЭБУ на место.

Несем ЭБУ и устанавливаем его обратно в машину подключив косу с колодкой. Далее понадобиться ноутбук (если вы очистили EEPROM, то сброс ЭБУ с инициализацией можно не делать).Теперь включаем зажигание ждем отработки бензонасоса, выключаем зажигание. Подключаем К-лайн адаптер к диагностической колодке.

диагностическая колодка OBD-II

запускаем программу OpenDiagFree, в программе выбираем свой блок м74к, включаем зажигание и после установки связи программы с ЭБУ делаем «Сброс ЭБУ с инициализацией».

программа OpenDiagFree

После завершения запускаем двс. Машина готова к поездке ! Все, что вы делаете конечно же на свой страх и риск, но как говориться кто не рискует тот не пьет. Прошивка в сервисе, стоит в 2 раза дороже. Я как всегда выбрал экономию + для меня это было интересно !
Есть еще один метод без перепайки резистора, при помощи программы OpenBox 3.16.9.

Ссылка на основную публикацию
Похожее